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Abstract-· This paper provides simple and unified explicit hasls-free expresslolls l'm lime rale and
conjugate stress of an arbitrary Hill's strain for the first tlllle. which are valid for all cases of the
eigenvalues of the right stretch tensors.

I. INTRODLC110N

Let U be the right stretch tensor and {i.,) and iN,] he the eigenvalues of U and the
subordinate orthonormal eigenvectors, respectively. The followi ng class of strain measures
is known as Hill's strains [cf Hill (1968, 1978)] :

d

E = E(U) = L f(i.,)I\", ® 1\",. d = 3.
I ~-= I

( la,b)

where/f) is a strictly-increasing scalar function satisfying f( I ) = 0 and r (1) = I [hence
forth we shall assume that/f) is at least of el]. The following suhclass of Hill"s strains,
indexed by the parameter m. is known as Seth's strains [cf. Seth (1964)] :

I ' I["'" = L (i.;"-I)N,®N, = (L'''-I).
f11, _ I III

(2)

Hill's strains, even Seth's strains. are broad enough to include almost all the commonly
used Lagrangian-type strains such as the nominal strain E' I '. Green's strain E'~I, Almansi's
strain E I -

2
) and the logarithmic strain [11l1 = In C, etc.

On the other hand, by means of the notion of work conjugacy, introduced by Hill
(1968) and Macvean (1968). a class of stress measures may be derived in a natural way.
Let E be a Lagrangian-type strain. A symmetric second order tensor T is the conjugate
stress of the strain measure E if T: It offers the stress power 1i' per unit reference state
volume. i.e.

1i' = lIla: 0 = T: t. (3)

where (1, 0 and III are the Cauchy stress, the stretching tensor and the third principal
invariant ofU, respectively.

The conjugate stresses of [III, [121 and E' :i are well knO\\n [cf. Hill (1978) and Guo
(1984)]: they are the second Piola-Kirchhoffstress tensor.

(4)

the weighted convected stress tensor.
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and the Jaumann stress tensor
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(5)

(6)

Here F is the deformation gradient.
In the theory of finite deformations and in constitutive modelling, the aforementioned

strain measures, their time rates and their conjugate stresses are basic [cf. Hill (1968, 1978),
Guo and Dubey (1984), etc.]. The problem of finding expressions for these basic quantities
has attracted many researchers' attention in past decades, especially in the last decade. By
using the principal axis method, Hill (1968, 1978) derived component expressions for E(U)
and some conjugate stresses [cf. Guo and Dubey (1984) and Scheidler (I991a) for a more
compact form of the results]. However, component expressions, as given in a principal
basis, are valid only in this basis. In field problems (problems in solid mechanics or
continuum mechanics are often field problems), they are generally not satisfactory, because
at each point they demand a principal basis consisting of three orthonormal eigenvectors
of U. Although one can attack this by determining the eigenvalues and the corresponding
eigenvectors leading to the orthogonal transformation between the principal and common
bases, such procedures are usually tedious. As a result, the need to find explicit basis-free
expressions for the aforementioned basic quantities, which avoid the aforementioned tedi
ous procedures, become pressing.

Gurtin and Spear (1983) discussed the relationship between the logarithmic strain rate
and the stretching tensor. Guo (1984) first provided basis-free expressions for rates of the
stretch tensors [see also Guo et al. (1991)]. Carlson and Hoger (1986), Hoger and Carlson
(1984b), Hoger (1986), Mehrabadi and Nemat-Nassert (1987), Scheidler (1991 b, 1992),
Wang and Duan (1991) and Man and Guo (1993) obtained many results for basis-free
expressions for various strain measure rates. On the other hand, Hoger (1987) and Lehmann
and Liang (1993) offered basis-free expressions for the conjugate stresses of the logarithmic
strains In U and In V, respectively. The basis-free expression for the conjugate stress of an
arbitrary Seth strain was derived by Guo and Man (1992) [cf. Guo et al. (1994)].

Thus far, the conjugate stress of an arbitrary Hill's strain has not yet been available.
Moreover, the existing results provide distinct expressions for distinct cases when the
eigenvalues of U are distinct, doubly coalecent and triply coalecent. Unified basis-free
expressions for time rates and conjugate stresses of various strain measures, valid for all
cases of the eigenvalues of U, are still wanting.

The objective of the paper is to provide simple and unified explicit basis-free expressions
for time rate and conjugate stress of an arbitrary Hill's strain. The main procedures are as
follows. In Section 2, as a basis for the subsequent sections we find the expression for the
twirl tensor n which rotates the Lagrangian triad {N,} consisting of three orthonormal
eigenvectors of U. In Section 3, we offer a simple and unified basis-free expression for time
rate of an arbitrary Hill's strain. In Section 4, we derive a simple and unified basis-free
expression for conjugate stress of an arbitrary Hill's strain from the notion of work
conjugacy. Finally, in Section 5, we discuss some examples for illustration.

2. TWIRL TENSOR

In a deforming body, the Lagrangian triad {N,} rotates with respect to a fixed orthog
onal triad. The angular velocity of (N,} can be described by a skew-symmetric second order
tensor n, i.e.

(7)

n, called the twirl tensor by Hoger (1986) and Guo et al. (1992), will be used in the next
section. If we can justifiably differentiate the spectral representation
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L' = L i.,N, ® N i
r = ]

with respect to the time f, then we get

0= L (I.,N, ® Ni+i.i(nNil ® N,+i.,Ni ® (fiN,))
Ie-: I

,
= II.,Ni®N,+nL'-un.

i-I

i.e.

1

nu - un = 0 - I I.,Ni ® !'ii'
i = 1
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(8)

(9)

In the preceding equation, U is supposed to be a given function of f, which is at least of
class ct.

Guo et al. (1992) derived a similar equation for the twirl tensor of any second order
symmetric tensor describing physical phenomena and offered its distinct basis-free solutions
for distinct cases of the eigenvalues of U. Recently, Guo cf al. (1995) further studied the n
dimensional tensor equation AX - XA = C. where A, C and X are second order tensors
over an n-dimensional Euclidean space and A is symmetric, and derived a unified basis-free
solution, valid for all cases of the eigenvalues of A. In the following, we shall investigate
the preceding tensor equation using a new method.

Let ;'1""';'''' be all the distinct eigenvalues of U and PI,"" P", be the subordinate
eigenprojections. Then eqns (I) and (8) may be recast into

with

ni

U = L ;'aPa;
(J'=-- I

11/

E = L f(i.alPa.
rr=]

(lOa,b)

n,

L Pa = L
(j.~ I

(II)

(l2)

where I is the second order identity tensor. The eigenprojections are expressible in terms of
U and its eigenvalues. In reality [cf. Luehr and Rubin (1990)],

hence,

n, U~;.J

Pa = TI-.---.-, m> I: Pa=I. m= I:
'~ I Aa -I.,

(13)
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[Pa = TOI (lea-i,) -:f. O;/7J = I; andfors = I, ... ,m-I,

L: = : ~al)' L ;'a, ... ;.aJI-6aa ,} ... (1-6aa ).
1 ~(}I <: •.• <rr,:<;;111

(14)

(15)

By using eqn (10a), we recast eqn (9) into

'"
QU -UQ = U~ I AaPa·

(1."...,l

By eqns (lOa) and (II), we infer:

From this and eqn (16) we derive:

i.e.

l'aPa = PaUPa, (J = l, ... ,m.

r = I, ... ,m,

(16)

(17)

(18)

By means of eqn (I) it can be readily proved that the above m conditions are equivalent to
the following:

III 111

I PaUPa = L tpa.
(7 = 1 IT c-o I

(19)

The latter is the necessary and sufficient condition for the existence of the solution of the
tensor equation (16). We have the following result.

Theorem 1. The tensor equation (16) has a solution iff eqn (19) or (18) holds and under
this condition the general solution QEskw of the tensor equation (16) is of the following
form:

(20)

Here La", , means that the summation indices (J, r = I, ... ,m and (J -:f. r. For m = I, such
summation is taken as zero. Here, skw is used to represent the set of all skew-symmetric
second order tensors.

Prior to the proof, we make the following convention. Lin represents the second order
tensor space over a three-dimensional Euclidean space. The sign: indicates double dot or
interior product of two tensors. In addition, two juxtaposed tensors mean their com
positional product (this convention has been used).

The proof of Theorem I is as follows.
Define a bilinear map I8J : Lin x Lin ~ L(Lin) : (A,B) f-> A~B by



(A ~ B): X ~ AXB I .lfXE Lill. (21 )

Obviously, the fourth-order tensor over R i
• 1[2<] I. is the second-order identity tensor over

Lin. We mention that L(Lill) is the fourth-order tensor space over R i
• i.e. the second-order

tensor space over Lill.
By using eqns (lOa) and (12) we get

'-' -(\", ')' (/~~. \)-(~' . (f )'1[2<] L L [2<] 1 - L P~ [2<] L.. I.P. . L.. I"P~) [2<] .L.. P,
() i I . I / (j 1 , 1

'"
= I (i - ic)P, [2<] P = )' (I - i.")p,, [2<] P,.

(i.e I

From the following facts:

P Pl
' P . P fP,[2<]P,.rr=rr.r=r'

( ,,[2<] , . ( ~ [2<] ,) = 'I () I .. ot lL:rW1Se

1'1

l Pc [2<] P = 1 [2] I.

(22)

we conclude that the right-hand side of eqn (22) ollers the spectral representation of the
second order tensor over Lill. 1[2<] U - L [2<] I. and hence this tensor is a symmetric second
order tensor. The tensor equation (16) can be written into the following vector equation
over Lin:

(I[8:L-L[2<]I):Q= (- \~ J,P.( =C). (23)

Hence. the tensor equation (16) has a solution iff C i, cont~lined in the image space of
(; = 1[2<] U - U [2<] I. i.e. C E Im( (;). Since the image space Im(L) and the kernel space
Ker(O) of the second-order symmetric tensor C is orthogonal and Lin = Im(O) EEl Ker(C).
as well as the orthogonal projection of Ker( (;). is I;' I P, [2<] P~. we infer that C E Im(O)
iff C is perpendicular to the kernel space Ker(O). i.e.

'"L (P~ [2<] p.) : C = O.
~ I

i.e. eqn (19) holds. Moreover. since the restriction CIlml r, : 1m (0) --> Im( 0) is a nonsingular
linear transformation over Im(O) and by means of the spectral representation (22) its
inverse is readily available. hence eqn (16). i.L:. cqn (23). has a unique solution contained
in the image space Im(O). given by

Thus. the general solution ofeqn (16). i.e. eqn (23). is as follows:

so eqn (20) holds.

SA) 32-22-G
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Remark. Equation (20) offers the general solution of the tensor equation (16) in explicit
form, valid for all cases of the eigenvalues of U. This result, as it will be seen, plays a key
role in the succeeding discussion. As far as we know, it is given for the first time.

Remark. If U has three distinct eigenvalues, then for each WE skw,

m J

L P"WP" = L: (N;WN;)N; ® N; = O.
rr= I i= I

(25)

Thus, the solution of eqn (16) is unique and hence eqn (20) offers the required twirl tensor.
However, if U has repeated eigenvalues, eqn (25) no longer holds and hence eqn (16) has
an infinite number of solutions. Guo et al. (1992) have pointed out that the skew-symmetric
tensor Qlm may be justifiably taken as the twirl tensor for the case when U has repeated
eigenvalues. In our succeeding analysis, the multivaluedness of the solution of eqn (16) is
of no consequence and hence such further considerations are not essential, so we do not
bother to list further related results. Moreover, we obtain eqn (9) by differentiating eqn (8)
with respect to time and by using eqn (7), the defining equation for.Q. There remains the
question of whether and under what conditions we may justifiably proceed as indicated.
This problem has been solved by Guo et al. (1992).

3. TIME RATE OF AN ARBITRARY HILL'S STRAIN

Carlson and Hoger (1986) and Man and Guo (1993) provided distinct basis-free
expressions for the time rate of an arbitrary Hill's strain for distinct cases of the eigenvalues
ofU [cf. Wang and Duan (1991) and Scheidler (l99lb, 1992)]. In this section, we provide
new and unified basis-free expressions, which are valid for all cases of the eigenvalues of U
and from which the conjugate stress of an arbitrary Hill's strain can be derived immediately.

By differentiating eqn (1) and by using eqns (7) and (lOa), we obtain

m

E = L: f'(A")A,.,P,, +QE-EQ.
(1=1

Substituting eqn (18) into the above equation, we further get

m

E = L: f'(A")P"UP,, +QE-E.Q.
(1=1

By eqns (10b) and (I I) we infer:

(26)

(27)

Hence, by substituting eqn (20) into (27) and then using eqns (28) and (11), we get

Denoting

(29)
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(30)

where for (J = T = I, ... , m, the limiting process )'rr --+ Ar is meant, we may recast the pre
ceding expression into

III

It = L frrrPrrUPr = L(U): U
(r.t = I

III

L(U) = L .{"rPrr [8J Pro
a,t = I

(3Ia,b)

(32)

Finally, substituting eqn (13) into (3Ia), we obtain the following result.
Theorem 2. The time rate of an arbitrary Hill's strain possesses the following basis

free expression:

m-I

It = L Gr,uruu,
r ..\' = 0

III

Gn = L .I~rp;;lpr-IJ~'-I-,I;"-I-' =£""r,s=O, ... ,m-I.
(J,t = 1

Specifically, we have the following.

(i) U has three distinct eigenvalues, i.e. m = 3; AI =t- A,2 =t- A,3 =t- AI'

(33)

(34)

It = GOoU +£11 UUU +£22U2UU2 +£01 (UU + UU)

+G02(U 2U + UU 2) +£dUUU2+ U2UU) (35)

(36)

(38)



3334 H. Xiao

(40)

- ~ L: (I,,, + I" +2IIIA; 1A,- I )(}." - A,) - 2 (f(},,,) - f(A,)), (41)
12.23.31

where L: J", = J 12 +J23 +J31 and
12.23.) I

1

,1. = (AI -}'2)(A2 -A)(A) -AI)

XI =.f'(AI )l'(A2)['(A)

r = (AI +A2)(}'2+},))(},)+AI) = I II-III

and I, II and III are the three principal invariants of V, i.e.

1

1 = )'1 +A2+A)

II = AI A2 +A2A) +A)AI

III = }'1!.2!.)'

(ii) V has only two distinct eigenvalues, i.e. m = 2; AI of- A2'

(iii) V = AI, i.e. m = I.

E = GOoO = .f'(A)O.

(42)

(43)

(44)

(45)

(46)

(47)

(48)

4. CONJUGATE STRESS OF AN ARBITRARY HILL'S STRAIN

Let T be the conjugate stress of the Hill's strain E. According to the notion of work
conjugacy [cf. eqn (3»), we have

T:E=T(1):0. (49)

Here, the Jaumann stress T(1), given by eqns (4) and (6), is conjugate to the nominal strain
Ell) = V-I.

Substituting eqn (31) into (49), we get
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(L(U): T): D = TIl): D.

By the arbitrariness of D, we infer:

L(U): T = T(I).

SincefU is strictly increasing, i.e ..f'U > 0, we infer

f", *0, rJ,r= l, ... ,m.

From this we know that the tensor

m

L(U) = L .f~,P" 181 P,
IT.-r = I

3335

(50)

(51)

(52)

is a nonsingular symmetric second-order tensor over Lin. The crucial point is that the right
hand side of the above formula is just the spectral representation of L(U) (cf. the proof for
Theorem 1). From this fact and eqn (51), we derive the conjugate stress of E immediately:

T = L(Ur ' :T(') = ( f f;"P" [8]P,):TI])
a,r = I

m

= " (-IP T(llP
~ . aT a ro

a.t= I

(53)

Substituting eqn (13) into the above expression we get the following result.
Theorem 3. The conjugate stress of an arbitrary Hill's strain possesses the following

basis-free expression:

m-l

T = L Pr,urTII1U'
r,s = 0

m

" f'- I -- I - 1f" I'Prs = ~ . aT Po Pr m- I -r m-I-s = Psr-
a.r = 1

(54)

(55)

It can be seen that the coefficients Pr, can be obtained merely by replacing the coefficients
.f~T on the right-hand side of eqn (34) withf;'] . Specifically, we have the following.

(i) U has three distinct eigenvalues, i.e. m = 3; AI * A2 *)" *AI'

_ 1 " '2'2() A)2f"(A)f'(') _1+
2III2

" (',,',)-1(.(',,)-.(',))-1Poo - ----:; L. A" A, '" - T. " A, XI ~ L., A A A A
,1, - 12.23.31 12.23., I

(57)

- 1 " ('2 '2)2f"(' )('(') -I 2r " (' . )-I(f(') f(' ))-1PII - ,1,2 12.fJ.,1 I." -A, . A". AT XI + ~ 12.fJ.,1 A,,+AT A" - AT

(58)
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+ I~I 2: (Au + A,);,; IA;I(f(Jeu)-f(Je ,»-1 (61)
12.23.31

- ~ 2: (Au + I., + 211U; I I,; I ) (f(Jeu) - f(A,» - I , (62)
11.23.31

where XI; A and r, I, II and III are given by eqns (42) and (43).
(ii) U has only two distinct eigenvalues, i.e. m = 2; AI =I X2•

(iii) U = t i.e. m = I.

T = P T(') = _1_ Tl, ).
00 .f'(Je)

5. EXAMPLES

(63)

(64)

(65)

(66)

(67)

As an example, we derive the basis-free expressions for the time rate and the conjugate
stress of the logarithmic strain ElO) = In U by using the results given in the previous sections.
We have

(68)

Substituting these into eqns (36)-(41) and (45)-(48), we obtain:

(i) U has three distinct eigenvalues.
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I ~ '2.2(1 1 2 III ~ '-I '-1(' ')(1 • )-21 },,,
£02 = -- 1... 1."Ar A,,-Ar ) + ~ 1... I." Ar A,,+Ar A,,-Ar n;:

IIIfl. 2
\2.23.31 12.23.31 r

I ~ '1 •... 1 • - \ ' • - 2 I ),,,
- A 1... (I,,, + A r + 2III A" Ar )(A" - Ar ) n"

012.2).31 A r
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(69)

(70)

(71)

(72)

(73)

(74)

Equations (69)-(74) and (35) offer the time rate of In U when U has three eigenvalues
A\ 1= A2 1= A} 1= 1-\.

(ii) U has only two distinct eigenvalues,

(75)

(76)

(77)

Equations (75)-(77) and (44) offer the time rate of In U when U has only two distinct
eigenvalues,

(iii) U = }J.

It = }.\iJ.

Substituting eqn (68) into eqns (57)-(62) and (64)-(67), we obtain the following,

(i) U has three distinct eigenvalues.

_ III ~ , _ I • _ \ • 2 '2 2 2r ~ (. . I Aa )- 1
p \ 1 - 2 1... A" Ar (I." - le r ) +~ 1... (A" + I. r ) n-:;-

~ 12.23.11 12.23.31 I~r

(78)

(79)

(80)
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(81)

(82)

(83)

PIC = (84)

Equations (79) (X4) and (56) offer the conjugate stress of In U when U has three distinct

eigenvalues.
(ii) t" has only tv\() distinct eigenvalues.

I '. ( ') I)'. .. (.i l + i c -:~(il --i.. ) In~'1
(/1-1.• )-'. 1,2

(85)

(86)

(87)

Equation~ (X5) (X71 and (631 011\:1' the conjugate stress of In U when U has only two

eigenvalues i' l ¥ 1.-.

(iii) l = iJ

T = i.T il
'. (88)

With considerable labor, one can obtain Hoger's (1986) and Man and Guo's (1993)
results for the time rate of In LJ and Hoger's (J 9X7) result for the conjugate stress of In U
from the above results, and vice versa.

h. CO"JCLLDI"JCi REMARKS

In the previous sections. basis-free expressions for time rate and conjugate stress of an
arbitrary Hill's strain are derived by a simple method. The expressions (33), (34) and (54),
(55) are valid for all cases of the eigenvalues of U. By comparing our results for the time
ra te of Hill' s strains wi th the corresponding results presented by Carlson and Hoger (1986)
and Man and Guo (1993). one can see that the former is simpler than the latter. On the
other hand. our result for the conjugate stress of Hilrs strains is the first one.

To ensure the validity of our results. some condition should be imposed on the function
Ie). This problem was investigated by Carlson and Hoger (1986) and Man and Guo (1993).

Let t T be a symmetrie second-order tensor over an n-dimensional Euclidean space.
Then for Ii = /I. eq ns ( 1a. b) otTer a general form of isotropic tensor-valued function of a
symmetric tensor l". Carlson and Hoger (1986) were the first to obtain the derivative of
such a function. They presented explicit rcsults for 11 distinct eigenvalues and remarked that
for any elwin: of the dimcnsion /I and any particular type of coalescence, the corresponding
result could he derived by means of the continuity. Moreover, in a remark they conjectured
that. "in general. the formula for DF(X)[T] depends only on the number of distinct
eigenvalucs of X and is independent of the dimension of the underlying space" [see Carlson
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and Hoger (1986, p. 421)]. It can be easily understood that eqns (33) and (34) hold for the
n-dimensional case and hence that they provide the derivative of the tensor-valued function
E(U) that is valid for all cases of the eigenvalues of U. From eqns (33) and (34) it can be
seen that the aforementioned Carlson and Hoger conjecture is true.

The basis-free expressions (33) and (54) for the time rate and the conjugate stress of
the Hill's strain E(U) contain only the integral powers of the right stretch tensor U and
depend linearly on the rate (; and the Jaumann stress T(II, respectively; moreover, their
coefficients Cr , and p" [cf. eqns ( I 5), (29), (34) and (55)] depend on the distinct eigenvalues
of U only. To apply these expressions. determination of U and its distinct eigenvalues is
required. As we know. U is related to the right Cauchy-Green tensor C by

(89)

Presuming that the deformation gradient F is known. from the above we see that C is easy
to calculate, but the calculation of U is considerably more difficult. since it is the square
root of C. This difficulty can be circumvented by means of the works of Hoger and Carlson
(1984a) and Sawyers (\986) [cf. Marsden and Hughes (\983, p. 55) and Ting (1985)]. These
works enable us to calculate U, U I and the rotation R etc. in terms of the integral powers
of C and the principal invariants of C. In the following we indicate that the coefficients Crs

and Pr, in eqns (33) and (54) may be calculated directly in terms of the principal invariants
ofC.

In reality, from eqn (89) we know that the eigenvalues of U are the positive roots of
the sextic

where the coefficients arc the principal invariants of C. given by

Ie = trc. lIe = (trC)=-trC)2, II1e = dete.

Thus. the three eigenvalues (possibly repeated) of U are given by

I.; = _(\e+2" Il-3Ilecos(~(4)-2n:i)))1'. i = 1,2,3,
,,3

where

¢ = cos I (~~; -. 91._(~+.27I~_<.)\.
2(li-3I1d ' =

(90)

(91 )

(92)

(93)

From the above all the distinct eigenvalues of U. i.
1
••••• i.nl • are known and hence the

coefficients c" and (I" are determined. For the latter. we mention that as the functions of
the distinct eigenvalues i. l .... , i. In • the coefficients I:" and p" are independent of the order
of i'i"'" in!' since E" and p" are symmetric functions of i· I",., )./11'
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